Traveling fronts of copper deposition.

نویسندگان

  • Stephanie Thouvenel-Romans
  • Konstantin Agladze
  • Oliver Steinbock
چکیده

We report the experimental observation of traveling fronts during the electroless deposition of copper on passive steel substrates. The low-carbon steel samples are passivated in nitric acid prior to the plating experiment, thus creating a thin, protective oxide layer on the steel surface. The deposition experiments are carried out from slightly acidic (pH 3.2) copper sulfate solution and copper nitrate solution with the latter showing front propagation only in the presence of chloride ions. For up to 30 s, fronts propagate with constant velocities in the range from 0.5 to 5 mm/s depending on the experimental conditions. This phase of constant-speed propagation gives way to accelerating fronts and very rapid, spatially unstructured deposition. Front-mediated plating is observed over a wide range of cupric ion concentration and constitutes a striking and unexpected example for pattern formation in electrochemical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of monostable pulsating wave fronts for time periodic reaction-diffusion equations

Keywords: Reaction–diffusion equations Pulsating wave fronts KPP and monostable nonlinearities Uniqueness a b s t r a c t We establish the uniqueness of pulsating wave fronts for reaction–diffusion equations in time periodic media with monostable nonlinearities. For the Kolmogorov–Petrovsky– Piskunov (KPP) type nonlinearity, this result provides a complete classification of all types of KPP pul...

متن کامل

On the Existence of Axisymmetric Traveling Fronts in Lotka-volterra Competition-diffusion Systems in R

This paper is concerned with the following two-species LotkaVolterra competition-diffusion system in the three-dimensional spatial space { ∂ ∂t u1(x, t) = ∆u1(x, t) + u1(x, t) [1− u1(x, t)− k1u2(x, t)] , ∂ ∂t u2(x, t) = d∆u2(x, t) + ru2(x, t) [1− u2(x, t)− k2u1(x, t)] , where x ∈ R3 and t > 0. For the bistable case, namely k1, k2 > 1, it is well known that the system admits a one-dimensional mo...

متن کامل

Speed-up of combustion fronts in shear flows

This paper is concerned with the analysis of speed up of reaction-diffusion-advection traveling fronts in infinite cylinders with periodic boundary conditions. The advection is a shear flow with a large amplitude and the reaction is nonnegative, with either positive or zero ignition temperature. The unique or minimal speeds of the traveling fronts are proved to be asymptotically linear in the f...

متن کامل

Asymptotic Behavior of Traveling Wave Fronts of Lotka-Volterra Competitive System

This paper is concerned with the asymptotic behavior of the trav-eling wave fronts in Lotka-Volterra competition system. By Laplacian transform, we prove that the traveling wave fronts of the system grow exponentially when the traveling coordinate tends to negative infinity.

متن کامل

Existence and Asymptotic Behavior of Traveling Wave Fronts for a Time-Delayed Degenerate Diffusion Equation

and Applied Analysis 3 (a) (b) Figure 1: Sharp-type traveling wave fronts. (a) Monotonic increasing. (b) Monotonic decreasing. (a) (b) Figure 2: Smooth-type traveling wave fronts. (a) Monotonic increasing. (b) Monotonic decreasing. Clearly, for any given φ > 0, if

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 35  شماره 

صفحات  -

تاریخ انتشار 2002